Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content
This is a Non-Federal dataset covered by different Terms of Use than Data.gov.

An environment with strong gravitational and magnetic field alterations synergizes to promote variations in Arabidopsis thaliana callus global transcriptional state

Metadata Updated: February 22, 2025

Using diamagnetic levitation we have exposed A. thaliana in vitro callus cultures to five environments with different levels of effective gravity (from levitation i.e. simulated mg to 2g) and magnetic fields (10.1 to 16.5 Tesla) and we have compared the results with those of similar experiments done in a Random Position Machine (simulated micro g) and a Large Diameter Centrifuge (2g) free of high magnetic fields. Microarray analysis indicates that there are changes in overall gene expression of the cultured cells exposed to these unusual environments but also that gravitational and magnetic field produce synergic variations in the steady state of the transcriptional profile of A. thaliana. Significant changes in the expression of structural abiotic stress and secondary metabolism genes were observed into the magnet field. These results confirm that the strong magnetic field both at micro g or 2g has a significant effect on the expression of these genes but subtle gravitational effects are still observable. These subtle responses to microgravity environments are opposite to the ones observed in a hypergravity one. seven-condition experiment MM2D Arabidopsis culture callus control vs. Treatment (altered gravity simulation GBF). Three GBF were used (LDC (2g) + control RPM (mg) + control and Magnet (mg 0.1g 1g 1.9g 2g) + control). Biological replicates: 3 replicates in all conditions and controls except 1.9g (2 replicates)

Access & Use Information

Public: This dataset is intended for public access and use. Non-Federal: This dataset is covered by different Terms of Use than Data.gov. License: No license information was provided.

Downloads & Resources

Dates

Metadata Created Date February 22, 2025
Metadata Updated Date February 22, 2025
Data Update Frequency irregular

Metadata Source

Harvested from nasa test json

Additional Metadata

Resource Type Dataset
Metadata Created Date February 22, 2025
Metadata Updated Date February 22, 2025
Publisher National Aeronautics and Space Administration
Maintainer
Identifier nasa_genelab_GLDS-8_apq5-hqai
Data First Published 2018-06-26
Data Last Modified 2025-02-19
Category Earth Science
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 351bf912-8838-4dcc-9695-aacac6566e1a
Harvest Source Id a73e0c30-4684-40ef-908e-d22e9e9e5f86
Harvest Source Title nasa test json
Homepage URL https://data.nasa.gov/d/apq5-hqai
Program Code 026:005
Source Datajson Identifier True
Source Hash cb91e1eb64bc164cdc8c6ef537131856a4520dd0cf167a69c58eda1f1acff3ca
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.